

A6 to Manchester Airport Relief Road

B006 – Hill Green Accommodation Bridge Preliminary Design Report Report No. 1007/407/086

September 2013

PRELIMINARY DESIGN REPORT

Structure Name :Hill Green Accommodation BridgeStructure Number :B006

Report No. 1007/104/086

Report Control Sheet

Version	Date	Status	Prepared By	Checked By	Approved By
P1	08/01/2012	Draft	N Afshar	N Sheena/ T Kshirsagar	N Sheena
2	10/05/2012	Draft (Final)	N Afshar	T Kshirsagar	N Sheena
3	24/01/2013	Draft (Final)	M Mfandarahwa	N Sheena	N Sheena
4	29/08	Draft	L Fields	M Mfandarawa	N Sheena
5	13/09/2013	Final	L Fields	N Sheena	N Sheena

Table of Contents

1. Description of Site	1
2. Highway Details	1
3. Proposed structure	
4. Span arrangements	2
5. Headroom and Clearances	2
6. Road Restraint system (Bridge Parapets)	2
7. Preferred Structural Option	2
7.1 Superstructure	2
7.2 Substructure	3
8. Geotechnical Information	3
8.1 Groundwater	3
8.2 Preliminary Geotechnical Assessment	
9. Environmental Impact Considerations	
10. Appearance	
••	

Appendix A: Location Plan

Appendix B: Proposed General Arrangement Drawing

3D Model

Appendix C: Ground Investigation Information

1. Description of Site

Hill Green Accommodation Bridge is part of the South East Manchester Multi Modal Strategy (SEMMMS) A6 to Manchester Airport Relief Road (A6MARR) and is proposed to cross the route providing accommodation, pedestrian/equestrian route access to farmland.


The Bridge is located in the vicinity of Park House Farm between Woodford Road, to the North, and Lower Park Road, to the South, at chainage 11040m approximately. It provides farm vehicle accommodation access and serves as a diversion of footpath FP31.

There are a few residential properties approximately 150m to the West on Woodford Road. The immediate surrounding area, however, is generally open farm land. An aerial location plan at 1:1250 scale with the bridge extents delineated in red is included in Appendix A.

2. Highway Details

Over Structure: Hill Green Accommodation Bridge; 3.0m width single carriageway with two verges and string courses (2 X 0. 5m Verges + 3.0 Carriageway + 2 X 0.5m string courses).

Under Structure: Under Structure – A6MARR with a total width of 24.7m wide. Central reserve is 2.6m. Other dimensions and arrangement are as follows:

3. Proposed structure

The proposed structural arrangement for this bridge has been changed from three spans with piers at the A6MARR verges, to a single span structure at Design Freeze 7.

The proposed structure will be a single span fully integral bridge. The superstructure will be in the form of precast prestressed concrete U beams and reinforced concrete slab deck. The square deck width including parapet up stands will be 5.0m.

The bridge superstructure will be supported on full height R.C abutments which will be founded on spread footings. Reinforced concrete wing walls with a return of approximately 45 degrees to the bridge span are proposed and will be constructed on spread footings.

A proposed General Arrangement drawing is included in Appendix B.

4. Span arrangements

The single span structure crosses the A6MARR square to the carriageway. A span of 28.7m is measured between bearing centrelines,

5. Headroom and Clearances

A minimum headroom of approximately 5.7m is provided, therefore in accordance with TD27/05 the superstructure will not need to be designed for impact load.

The abutment walls are positioned at a minimum of 4.5m from the carriageway in order to mitigate the risk of vehicular impact.

6. Road Restraint system (Bridge Parapets)

Type N2 steel parapet with mesh infill is in accordance Road Restraints Risk Assessment Process (RRRAP) and TD19/06. Working width class to be not greater than W4 and will be decided in the final stage of the design. The parapet height is to be 1800mm above finished surfacing level as required for equestrian usage. A 600mm high solid infill panel will be provided in order to obstruct an animal's view of the road below. Mesh infill will be provided for remaining height of the parapet.

Timber post and three rail fencing with a pvc coated mesh infill are to be provided at the bridge approaches.

Steel tubular hand rails are to be provided at the tops of the wingwalls.

7. Preferred Structural Option

7.1 Superstructure

Single span, fully integral pre-cast pre-stressed concrete beams and slab deck - refer to Drawing Number 1007/3D/DF7/A6-MA/B005/706 in appendix B:

Fully integral construction is a feasible and considered a cost effective solution. Elimination of movement joints removes a major cause of maintenance problems from penetration of dirt, water and de-icing salts, which corrode substructures. The advantages and disadvantages of using pre-cast concrete beams are given below:

The advantages for using pre-cast concrete beam construction are as follows:

- Low capital & whole-life cost
- Good aesthetics due to symmetrical structure
- Fast and efficient build
- Factory quality with engineered tolerances
- Low maintenance

- The beams can be lifted individually
- Permanent formwork provides self-supporting system during construction and eliminates falsework
- Reduces site works which are weather dependent

Disadvantages:

- Precast concrete beams are usually heavier than comparable steel beams. As a result larger cranes might be required to lift the precast concrete beams
- Heavier superstructure mentioned above might lead to larger foundation sizes
- Delivery times are dependent on a specialist supplier

7.2 Substructure

It is proposed that the bridge will be supported on full height in-situ reinforced concrete wall abutments. They are regarded as the most suitable option considering the topography of the site, existing ground level and the feasibility of the work.

With settlement regulated by the use of imported granular fill it is proposed that the R.C. wall abutments will be supported on spread footings. Further discussion regarding the geotechnical assessment is addressed in Section 8 of this report.

8. Geotechnical Information

The ground and groundwater conditions for the Hill Green Accommodation Bridge have been assessed using relevant geological maps (Stockport Sheet 98, Solid and Drift Scale 1:50,000) and 3 No. exploratory bore holes logs provided by a number of phases of GI for the area.

8.1 Groundwater

The ground conditions described on the geological maps indicate Boulder Clay of Recent and Pleistocene age, over Pebble Beds, of Permian to Triassic age which are part of the Sherwood Sandstone Group; the ground conditions identified within ground investigation did not encounter rock head at this location.

8.2 Preliminary Geotechnical Assessment

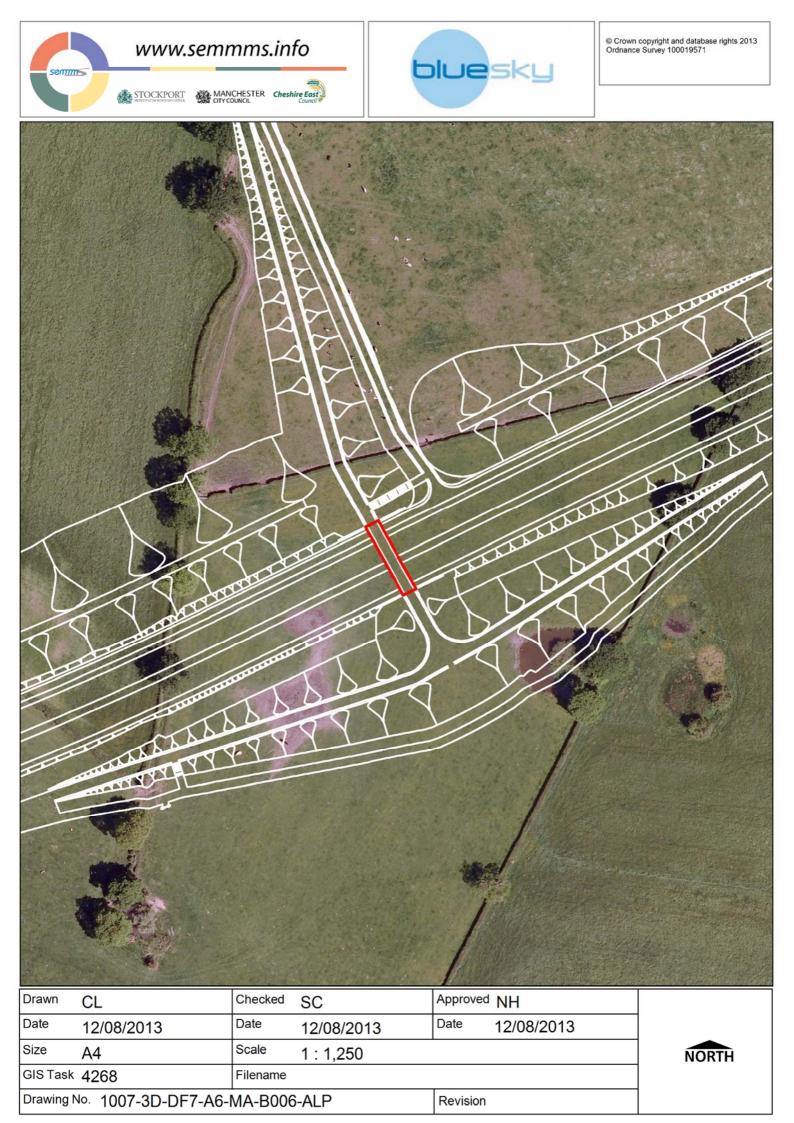
It is anticipated that the whole area underlying the proposed embankments will need ground improvement due to the presence of soft clays and peats at shallow depths, as this should regulate the settlements. The embankment will need to be constructed with imported granular fill (6N/6P) and will need to be monitored for groundwater, pore water pressure and settlements (inclinometers) during and after construction.

Additional deep GI/Cone Penetration Tests (CPT's) will be needed to probe for peat, and confirm presence across area before the final stage of the design.

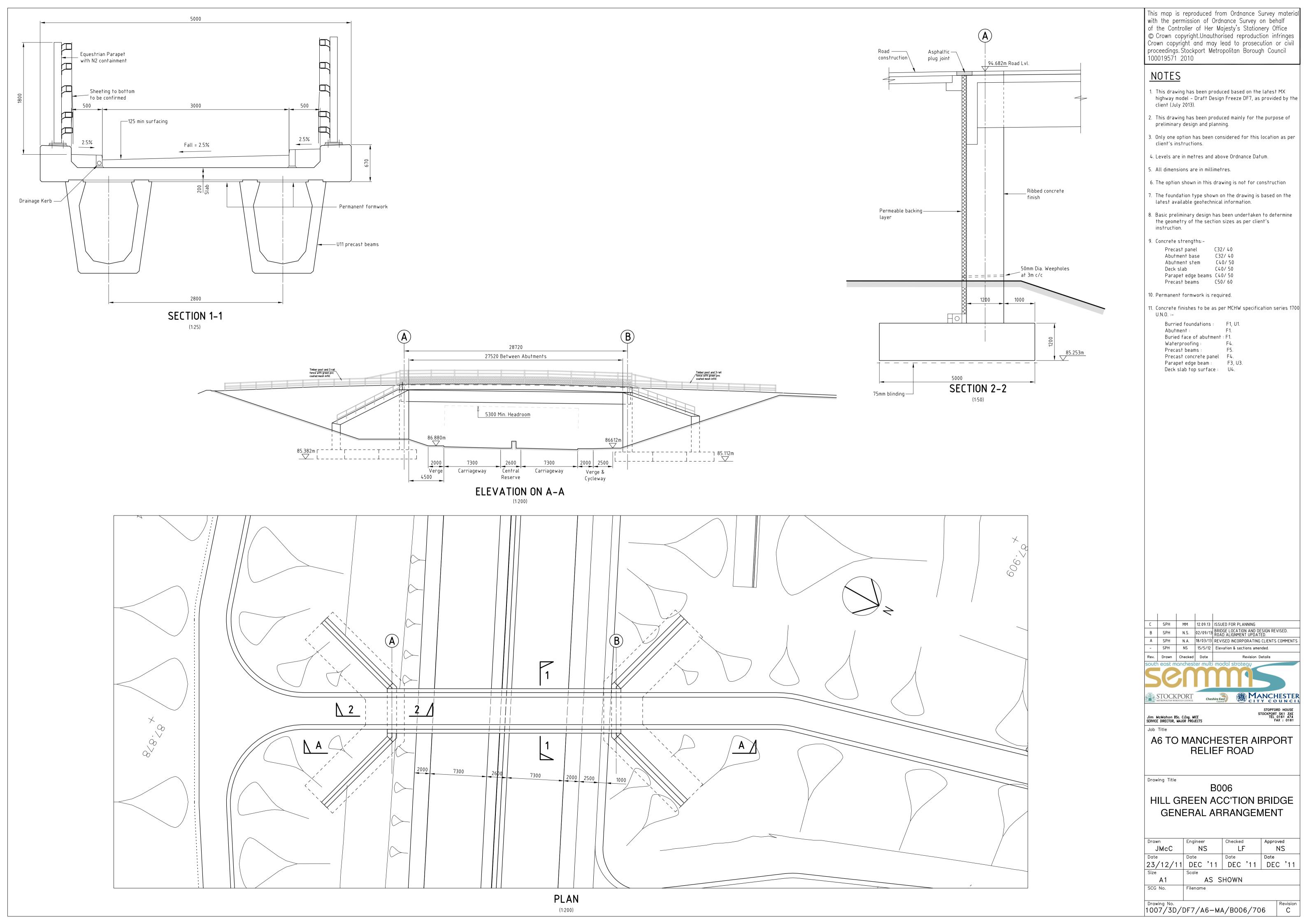
Given that groundwater has been identified in a number of exploratory bore holes, drainage methods may need to be considered in the design. Further investigation into the groundwater levels and changes with seasons, along with flow rates is recommended for the foundation design and drainage methods.

9. Environmental Impact Considerations

Refer to Volume 1 (Main Text) of the Environmental Statement.


10. Appearance

The superstructure on elevation comprises of approximately 1.5m deep precast beams and 0.5m string course spanning across the A6MARR.


The appearance of the exposed faces of the abutment walls will be determined based upon SMBC planning requirements.

Appendix A:

Location Plan

Appendix B: Proposed General Arrangement Drawing 3D Model

B006 – Hill Green Accommodation Bridge

Appendix C: Reviewed Ground Investigation Information

BOREHOLE LOC	ì
--------------	---

		Samples	& Tests							Strata					ant
Dept	th	Туре	Test	:	TCR SCR RQD	If	Water/ (Flush Return)	O.D.	Depth	Description		Ie	gend	Backfill/	Instrument
		No	Resul	ts	RQD		,	Level	(Thickness)	TOPSOIL: (turfed)				Ba	<u>1</u>
0.50	0.50	D 55856PT	N = 2(225n 1 0/1 0 1 0	1111))				87.01	- (0.40) - 0.40	Soft grey and brown laminated slightly organic Below 3.40m: with bands of peat.	silty CL	AY			
									-						
1.20		U 5586							-						
1.70	1.70	D 55878PT	N = 2(225n 1 0/1 0 1 0	1111))					-						
2.40		U 501 U 5588							(3.70)						
2.90	2.90	D 55898PT	N = 2(225n 1 0/0 0 1 1	1m)					- - - -						
3.60		U 5590							- - - -						
4.00 4.10	4.10	W 5592 D 5591SPT	N = 8(450n	1111)				83.31	4.10	Firm block brown on one DDAT with this	lowono of		1 1 1	7	
		2 0001	12/2222	2					- - (0.80) -	Firm black-brown amorphous PEAT with thin yellow silt.	layers of	<u>// \</u>			
1.80		U 5593						82.51	- 4.90 -	soft grey very sandy CLAY. Below 5.30m: soft	o firm br	own 🗵	<u>, , , , </u>	-	
5.30	5.30	D 5594SPT	N = 9(450n 1 1/2 2 2 3	1111) 3					- - - - -	with some subangular fine gravel. Below 6.50r Below 7.70m: stiff.	n: firm to	stiff.			
6.00		U 5595							-						
6.50	6.50	D 55968PT	N = 15(450 2 3/3 4 4 4	mm) I					- - - - -						
7.20		U 5597							 (4.50)				×		
7.70	7.70	D 5598SPT	N = 20(450 1 3/5 5 5 5												
8.40		U 5599							-				 		
8.90	8.90	D 56008PT	N = 21(450 2 3/4 5 5 7	mm)					- - - -			× ×	× 0 ×		
								78.01	9.40	End of Borehole					
									-						
		Water	Strikes							Method, Equipment and Remarks					_
Strike Depth	Casir Dept	g Post	Post Depth	Flow	Rema	arks	Meth	od: CP		· · · · · · · · · · · · · · · · · · ·					
4.90		20	4.00												

Scott Wilson

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	VNITO			
Depth Type No Test Results CC Results Image Property Results Depth Level Depth (Thickness) Description 0.50 0.50 D 560 SFT N = 12(450nm) 2.2/2 3 3 4 N = 12(450nm) 2.2/2 3 3 4 N = 12(450nm) 2.2/2 3 3 4 Image Property Results $\frac{87.54}{1.60}$ $\frac{0.20}{1.60}$ True grey mottled orange-brown silty CLAY with silt partings. 1.20 U 5602 N = 7(450nm) 2.2/3 2 1 1 N = 7(450nm) 2.3/3 2 1 N = 7(450nm) 2.3/3 2 1 N = 7(450nm) 2.3/4 4 4 N = 16(450nm) 2.3/4 4 4 Firm dark brown-black fibrous sandy PEAT with soft organic day layers. 3.50 U 5604 N = 16(450nm) 2.3/4 4 4 4 Image Property Results Firm red-brown sandy CLAY with a little subangular and subrounded fine gravel. 4.00 4.00 D 56058PT N = 16(450nm) 2.3/4 4 4 Image Property Results Image Property Results 5.20 5.20 D 56068PT N = 15(450nm) 2.3/3 4 4 Image Property Results Image Property Results 5.20 D 56068PT N = 15(450nm) 2.3/3 4 4 Image Property Results Image Property Results 5.20 D 56068PT N = 15(450nm) 1.3/3 4 4 4 Image Property Results Image Property R	Sheet: 1 of			
ppt Type Tester Tester Polo				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Legend	Backfill/		
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 100 <td>Logona</td> <td><u>8</u></td>	Logona	<u>8</u>		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
1.20 U 5602 N = 7(450mm) 86.24 1.50 1.70 1.70 D 56038FT N = 7(450mm) 86.24 1.90 2.30 U 5604 N = 7(450mm) $23/3 2 1 1$ 86.24 1.90 2.30 U 5604 N = 16(450mm) 85.84 1.90 Firm red-rown sandy CLAY with a little subangular and subrounded fine gravel. Below 4.00m: brown very sandy with much gravel. 2.80 2.80 D 56038FT N = 16(450mm) 1.40 1.40 1.40 3.50 U 5606 N = 11(450mm) 1.44 1.40 1.40 1.40 4.00 D 56078FT N = 11(450mm) N = 11(450mm) 1.44 1.40 1.40 5.20 D 5008FT N = 11(450mm) 1.44 1.40 1.44 1.40 5.20 D 50098FT N = 15(450mm) 1.3/3 4 4 4 1.44 6.30 1.44	·			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
1.701.70D 56038FTN = 7(450nm) $2/3 2 1 1$ $= (0.40)$ $52/3 2 1 1$ Firm lack brown-black fibrous sandy PEAT with soft organic clay layers.2.30U 5604 $= (0.40)$ 1.90 Firm red-brown sandy CLAY with a little subangular and subrounded fine gravel. Below 4.00m: brown very sandy with much gravel.2.802.80D 56058FT $2.3/4 4 4 4$ $= 16(450mm)$ $2.3/4 4 4 4$ $= 16(450mm)$ $2.3/4 4 4 4$ 3.50U 5606 $= 11(450mm)$ $2.2/2 3 3 3$ $= 16(450mm)$ $2.2/2 3 3 3$ $= (4.40)$ 4.70U 5608 $N = 15(450mm)$ $1.3/3 4 4 4$ $= 16(450mm)$ $1.3/3 4 4 4$ $= 16(450mm)$ $1.3/3 4 4 4$ 5.80U 5610 $N = 15(450mm)$ $1.3/3 4 4 4$ $= 16(450mm)$ $1.3/3 4 4 4$ $= 16(450mm)$ $1.3/3 4 4 4$ 5.80U 5610 $N = 15(450mm)$ $1.3/3 4 4 4$ $= 16(450mm)$ $1.3/3 4 4 4$ $= 16(450mm)$ $1.3/3 4 4 4$				
1.70 1.70 $D = 56038FT$ $N = 7(450mm)$ $2/3 \ge 11$ 35.84 1.90 Firm red-brown sandy CLAY with a little subangular and subrounded fine gravel. Below 4.00m: brown very sandy with much gravel. 2.30 $U = 56038FT$ $N = 16(450mm)$ $23/4 \pm 4 \pm 4$ $N = 16(450mm)$ $N = 16(450mm)$ 2.80 2.80 $D = 56078FT$ $N = 16(450mm)$ $23/4 \pm 4 \pm 4$ $N = 11(450mm)$ 3.50 $U = 56078FT$ $N = 11(450mm)$ (4.40) (4.40) 4.00 4.00 $D = 56078FT$ $N = 11(450mm)$ (4.40) 4.70 $U = 5608FT$ $N = 15(450mm)$ (4.40) (4.40) 5.80 $U = 5608FT$ $N = 15(450mm)$ (4.40) (4.40) 5.80 $U = 5608FT$ $N = 15(450mm)$ (4.40) (4.40) 5.80 $U = 5610$ $N = 15(450mm)$ (4.40) (4.40) (4.40)				
2.30 U 5604 2.30 U 5604 2.80 2.60 D 56035PT N = 16(450mm) 2.3/4.4.4.4 3.50 U 5606 4.00 4.00 D 56075PT N = 11(450mm) 2.2/2.3.3.3 4.70 U 5608 5.20 5.20 D 56095PT N = 15(450mm) 1.3/3.4.4.4 5.80 U 5610 81.44 6.30	1/ 1/ 1/ 1/			
2.30 U 5604 With much gravel. With much gravel. 2.80 2.80 D 5605FT $N = 16(450 \text{ mm})$ 3.50 U 5606 $23/4 4 4 4$ 4.00 4.00 D 5607FT $N = 11(450 \text{ mm})$ 2.2/2 3 3 3 (4.40) 4.70 U 5608 $N = 11(450 \text{ mm})$ 5.20 5.20 D 5605FT $N = 15(450 \text{ mm})$ 5.20 5.20 D 5605FT $N = 15(450 \text{ mm})$ 5.20 5.20 D 5605FT $N = 15(450 \text{ mm})$ 5.20 $100000000000000000000000000000000000$				
2.80 2.80 D 560597 $N = 16(450 \text{mm})$ 3.50 U 5606 4.00 4.00 D 560797 $N = 11(450 \text{mm})$ 2./2 3 3 3 4.70 U 5608 5.20 5.20 D 560597 $N = 15(450 \text{mm})$ 1.3/3 4 4 4 5.80 U 5610 8.1.44 6.30	x			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	× · · ·			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$4.00 4.00 D \; 5607SPT N = 11(450mm) \\ 2/2 \; 3 \; 3 \; 3 \\ 4.70 \qquad U \; 5608 \\ 5.20 5.20 D \; 5609SPT N = 15(450mm) \\ 1\; 3/3 \; 4 \; 4 \\ 5.80 \qquad U \; 5610 \qquad \qquad$				
4.00 4.00 D 5607SPT $N = 11(450mm)$ 2.2/2 3 3 3 4.70 U 5608 5.20 5.20 D 5609SPT $N = 15(450mm)$ 1.3/3 4 4 4 5.80 U 5610 81.44 6.30	×			
4.70 U 5608 5.20 5.20 D 56096PT $N = 15(450mm)$ 5.80 U 5610 81.44 6.30	<u> </u>			
4.70 U 5608 5.20 5.20 D 56096PT $N = 15(450mm)$ 5.80 U 5610 81.44 6.30				
5.20 5.20 D 5609SPT N = 15(450mm) 5.80 U 5610 $81.44 = 6.30$				
5.20 5.20 D 5609SPT N = 15(450mm) 5.80 U 5610 $81.44 = 6.30$	×			
5.20 5.20 D 56098PT N = 15(450mm) 5.80 U 5610 $81.44 = 6.30$	×			
5.80 U 5610 U 5610 81.44 6.30	<u> </u>			
5.80 U 5610 U 5610 81.44 6.30	×			
81.44 6.30	<u> </u>			
81.44 6.30	×			
	x			
	+			
Water Strikes Method, Equipment and Remarks				
Strike Casing Post Post Post Post Method: CP Depth Mins Depth Flow Remarks Method: CP Method				

Scale: 1:50 @ A4 Client: STOCKPORT METROPOLITAN BOROUGH COUNCIL

9.

Ductor		RMC .]	BOREI	IOLE LOG	So W	Cott. Ilson
Project		IMS 1992/01-	04 1002	Co		tor F C	201949	.0 N 3845	Job No: 37732ISG 39.9 Ground Level: 88.13 (m) EA	Borehole N	
			1992 INICAL ENGIN					0.0 N 3845	Engineer: Faber Maunsell Ltd	POYNTO Sheet: 1 of	
Contra					NG I		1		- C	Sheet: 1 of	
	Samples & Tests Type Test TCR If					Water/		1	Strata		iii/
Dep	th	Type No	Test Results	TCR SCR RQD	If (mm)	(Flush Return)	O.D. Level	Depth (Thickness)	Description	Legend	Backfill/ Instrument
-								Ē	TOPSOIL: (turfed)		
-							87.83	0.30	Soft to firm orange and grey very sandy CLAY. Below 1.7	'0m: 💌 💷	
0.50	0.50	D 5612SPT	N = 8(450mm)					-	fissured with some gleying.		
-		D 5613	1 1/2 2 2 2					F			
- 		D 5614						-			
1.00		U 5615						-		<u> </u>	
- 1.20		0 5015						-			
-								- (2.60)			
1.70	1.70	D 56165PT	N = 10(450mm) 1 1/1 2 3 4							<u> </u>	
-			1 1/1 2 3 4					-		×	
- 2.20		D 5617						-			
2.20		U 5618						-			
		0 0010						-			
-							85.23	2.90		×	
2.90	2.90	D 56195PT	N = 18(450mm) 2 3/3 5 5 5					-	Firm brown sandy CLAY with some subangular and		
-			20,0000					-	subrounded fine and medium gravel. At 4.10m: firm to s		
- 3.40		D 5620									
3.60		U 5621						-		×	
-											
_								-			
4.10	4.10	D 5622SPT	N = 27(450mm) 2 3/8 7 6 6					E		×	
_								E		_°	
4.60		D 5623						(3.50)		<u> </u>	
4.80		U 5624						E			
-								-			
-		-						L		<u> </u>	
5.30	5.30	D 56255PT	N = 14(450mm) 1 1/3 3 4 4					-		×	
-								F			
5.80		D 5626						F			
_ 5.90		U 5627						-			
							01.50	t an			
6.40		D 5628		-	-	1	81.73	6.40	End of Borehole		

	-
23	5.80 5.90
10:45:23	
~	6.40
23/11/201	6.40
23.	-
NEW.GDT	- - - - - -
É.	-
J AGS3_N	-
[di	-
1785-SEMMS.GPJ	-
5-SEI	-
06078	-
T\470	-
INFORMATION/GINT/	-
ATION	_
=0RM	-
N05.0 PROJECT INF	
ROJE	-
5.0 P	-
MS/0	-
785 - SEMMSV	-
785 -	
K:\4706078!	
	Strik
o/RC)	Dept
G (CP/	2.20
901 H8	
SW BI	
AGS3_NEW.GLB	
NEW.	
4 GS 3_	
AO	Scale

								-							
								-							
•															
•															
- - -								E							
 -								-							
•															
-															
			Strikes				Method, Equipment and Remarks								
Strike Depth	Casing Depth	Post Mins	Post Depth	Flow Re	emarks	, Meth	od: CP								
2.20		20	2.20	No rise.											
Scale:	1:50 @ A	4 Cli	ent: STC	CKPORI	MET	ROPOLIT	TAN BC	OROUGH CO	OUNCIL		Logged By:		Data Checked By	7:	